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Abstract—This study introduces an approach to three-
dimensional vehicle pose estimation using a stereo camera system.
After computation of stereo and optical flow on the investigated
scene, a four-dimensional clustering approach separates the static
from the moving objects in the scene. The iterative closest point
algorithm (ICP) estimates the vehicle pose using a cuboid as a
weak vehicle model. In contrast to classical ICP optimisation a
polar distance metric is used which especially takes into account
the error distribution of the stereo measurement process. The
tracking approach is based on tracking-by-detection such that
no temporal filtering is used. The method is evaluated on seven
different real-world sequences, where different stereo algorithms,
baseline distances, distance metrics, and optimisation algorithms
are examined. The results show that the proposed polar distance
metric yields a higher accuracy for yaw angle estimation of
vehicles than the common Euclidean distance metric, especially
when using pixel-accurate stereo points.

I. INTRODUCTION

For future advanced driver assistance systems the pose

and motion of oncoming and intersecting vehicles represent

an important information. Some approaches for detection of

obstacles around the ego-vehicle can be found in the literature,

but the existence of an obstacle is not enough information

to evaluate the situation entirely. The knowledge about pose

and motion of oncoming and intersecting vehicles is important

to avoid accidents. Especially at intersections, analysis of the

behaviour of other road users is important to help the driver to

pass through the intersection in a safe and comfortable manner.

A laser scanner and a video camera are used in [1] to

estimate the pose, size, and velocity of vehicles. The detection

of vehicles is based on the laser scanner data, after that

a cascade classifier uses the camera images to classify the

objects in front of the ego-vehicle. The evaluation in [1] is

limited to the classification performance of the system, while

the geometric detection accuracy is not assessed.

Stereo analysis based on affine warping is used in [2] to

detect obstacles in front of the ego-vehicle. The image of the

left camera is warped and mapped onto the image of the right

camera using affine warping and edge comparison. Dynamic

Programming estimates a boundary between the road surface

and obstacles on the road. The poses of the obstacles are not

estimated.

In [3] the scene in front of the ego-vehicle is reconstructed

using both stereo vision and structure from motion. The ob-

jects are detected and classified using the approach introduced

in [4]. The results are only reliable in a depth range between

15 and 30 metres. The pose of the objects is only roughly

estimated and not compared to ground truth data.

In contribution [5] a stereo camera system is used for

several applications (e.g. detection and tracking of vehicles

and pedestrians). First, an occupancy grid is created using the

3D points of an initial stereo calculation to detect objects in

front of the car. When an object is found, the size and aspect

ratio of the object are used to find a corresponding model in

an object model database. The 3D model from the database is

projected into the image and fitted to the image of the object

using chamfer matching. The distance range for reliable results

is about 35 m. A statement about the pose accuracy of the

objects is not given.

The approach introduced in [6] uses a sparse scene flow

field which is established by a Kalman filter based fusion of

stereo vision and tracked optical flow vectors. An Extended

Kalman Filter tracks the point cluster representing the vehicle.

An explicit vehicle model is not utilised, but the size of the

vehicle is estimated regarding the size of the point cloud. The

settling time of the filter amounts to about 25 frames for the

sequences examined in [6].

The approach in this study aims for a high accuracy of

the pose estimation without relying on temporal filtering.

We thus perform a tracking-by-detection approach where the

pose estimation is performed individually for each frame. The

method is evaluated using ground truth data and real-world

sequences. We use a sparse scene flow field to have reliable

depth information combined with motion information about

the investigated scene. After clustering of the four-dimensional

point cloud (three-dimensional spatial coordinates and one-

dimensional horizontal motion information), object clusters are

used to estimate the object pose. The approach is evaluated

on seven different real-world sequences including slowly and

fast moving vehicles on an intersection, captured with three

different stereo baseline distances and three different stereo

algorithms.

II. 3D TRACKING SYSTEM

The tracking system is based on the combination of stereo

and optical flow computation. First, the input images from a



calibrated camera system are rectified to standard geometry

with epipolar lines parallel to the image rows. We use three

different algorithm combinations which are described in the

following sections to calculate a sparse incomplete scene flow

field. Afterwards, the 3D points are clustered into separate

objects. The 3D points of an object are used for the ICP

algorithm to estimate the object pose, where the classical

Euclidean distance or the polar distance metric introduced in

this study can be used.

A. Spacetime Stereo

The spacetime stereo algorithm is based on local intensity

modelling and yields 3D points with the associated motion

component parallel to the epipolar lines [7]. Image regions

corresponding to a sufficiently high vertical intensity gradient

are extracted in the left and right camera image, and their local

spatio-temporal neighbourhood is modelled by the model func-

tion h(~P , u, v, t), where u and v denote the pixel coordinates,

t the time coordinate in a spatio-temporal region of interest,

and P the vector of function parameters:

h(~P , u, v, t) = p1(v, t) tanh [p2(v, t)u + p3(v, t)]

+ p4(v, t)
(1)

The tanh function approximates the shape of an ideal edge

blurred by the point spread function of the optical system.

Correspondence analysis is then based on a comparison of

the modelled edges in the left and the right image. The SSD

values on each epipolar line are analysed, where different

constraints can be taken into account: uniqueness, ordering,

or the minimum weighted matching constraint [8]. Analysis of

the model function parameters yields the velocity component

along the epipolar line and subpixel accurate disparity values.

B. Feature-based stereo and optical flow

The utilised feature-based method for computing stereo and

optical flow is based on Haar Wavelets to obtain a feature rep-

resentation of the investigated scene [9]. The wavelet features

are established in both images (left and right camera or current

and previous timestep), then the comparison is performed

using a hash table technique. This approach provides a fast

implementation of the algorithm. The correspondences have

pixel accuracy, which is a disadvantage in comparison with

the other regarded stereo algorithms. The combination of the

stereo and optical flow results yields 3D points associated with

the motion components parallel to the image plane.

C. Correlation Stereo and feature-based optical flow

The combination of correlation-based stereo with the

feature-based optical flow technique yields optical flow and

more precise depth information in real-time. The correlation-

based stereo algorithm is based on the SSD comparison

of left and right image patches [10]. An interest operator

(Prewitt filter) is used to separate reliable from unreliable

depth information. The combination yields 3D points with

two-dimensional motion vectors.

D. Clustering

An initial segmentation of the attributed 3D point cloud

extracted with any of the sparse scene flow techniques (cf.

Fig. 1a) is obtained by means of a graph-based unsuper-

vised clustering technique [11] in a four-dimensional space

spanned by the spatial coordinates and the horizontal velocity

component of the 3D points. This clustering stage generates

a scene-dependent number of clusters, essentially separating

the moving object from the (stationary or differently moving)

background.

E. Pose Estimation using ICP and Euclidean Metric

For pose estimation, a cuboid is utilised as a weak geometric

model representing several types of vehicles. An initial pose

is estimated based on the centroid and the first principal

component of the vehicle point cloud. Afterwards, the iterative

closest point (ICP) algorithm [12] fits the geometric model to

the point cloud. Thus the translational pose parameters tx and

tz and the yaw angle θ are updated by minimising the mean

squared distance between the scene points and the model. The

distance di is the perpendicular between the visible model side

and the 3D point in Euclidean space (cf. Fig. 2a), where pi

denotes the 3D point and pmi
the corresponding point on the

model plane:

di(tx, ty, θ) = ‖pi − pmi
‖. (2)

Different nonlinear optimisation methods can be used for the

minimisation of the error function. In this study we use the

Levenberg-Marquardt with numerically calculated derivatives

and the Downhill-Simplex algorithm [13].

In [12], the ICP algorithm is applied to the registration

of point sets, curves, and surfaces. Since this approach can

only be used in situations where all scene points belong

to the object, it is a pose estimation rather than a scene

segmentation technique. In the ICP algorithm proposed in [14],

the scene points and the object model are represented as sets of

chained points. During each iteration step the pose parameters

are updated while at the same time some scene points are

assigned to the object model and others are discarded, based

on the distance to the object and the similarity of the tangent

directions of the scene and model curves. Thus, outliers in the

3D point cloud are automatically rejected, and the algorithm

is robust with respect to disappearing and re-appearing object

parts as well as partial occlusions. As a result, the subset of

scene points belonging to the object, i. e. a scene segmentation,

is inferred along with the 3D object pose.

F. Polar Distance Metric

The ICP algorithm with the Euclidean metric does not

take into account the properties of the stereo measurement

process. When reconstructing 3D points from two cameras,

the relation between the disparity and the depth is nonlinear.

This results in a low accuracy for points which are far away

from the camera, while points close to the camera have a

higher accuracy. The noise of the point positions is neither

Gaussian nor symmetric. The Euclidean metric used in the



(a) Input image with 3D points.
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(b) Bird’s eye view. (c) Clustered points.

Fig. 1. Example of an incomplete sparse scene flow field. (a) Original image with projected 3D points (green) and associated motion vectors (red). (b) Bird’s
eye view of the same scene. (c) Clustered points belonging to the vehicle (blue) together with the adapted model (black).

standard ICP assumes at least a symmetric error distribution of

the measurements. To overcome this problem one might think

of transforming the geometric model into disparity space (pixel

coordinates and disparities), which is very complex depending

on the model. We thus prefer using a distance metric which

takes into account the nonlinearity of the measurement error.

The 3D points are represented in polar coordinates (cf.

Fig. 2b) on the xz plane, where the distance is r(x, y, z) =
√

x2 + y2 + z2 and the polar angle amounts to ϕ =
arctan(x/z). Assuming an ideal pinhole camera model, the

pixel coordinates (u, v) can be transformed into the 3D

coordinates according to u/f = x/z and v/f = y/z, where

f denotes the camera constant in pixels. Assuming a standard

epipolar geometry, the depth coordinate z can be calculated

by z = bf/d, where b is the baseline distance in metres and

d the disparity in pixels. Using these equations, the distance

to the camera r(u, v, d) is given by

r(u, v, d) =

√

(

bu

d

)2

+

(

bv

d

)2

+

(

bf

d

)2

. (3)

An error calculation based on the total differential dr is used

to analyse the relations of the depth measurement process:

dr =
∂r

∂u
du +

∂r

∂v
dv +

∂r

∂d
dd (4)

Converting these terms into three-dimensional world coordi-

nate expressions results in the following relations:

∂r

∂u
=

x

f

z

r
,

∂r

∂v
=

y

f

z

r
,

∂r

∂d
=

zr

fb
. (5)

The term z/r is smaller than or equal to 1. The terms x/f ,

y/f and z/f all have the same order of magnitude. The

measurement errors du and dv of the pixel coordinates u,

v and the disparity measurement error dd are of the order

0.1−1 pixels and independent of z and r. In our scenario one

can assume that r/b ≫ 1, whereby the measurement error dr
largely depends on the disparity error dd. Accordingly, dr is

approximately proportional to zr.

Hence, this error analysis yields the result that the nor-

malised measurement error dr/(zr) has an approximately

Gaussian distribution. The error distribution of the polar angle

ϕ is also approximately of Gaussian shape. This results in

an error function E for the model fit which consists of an

error term regarding the distance of a 3D point to the model

and a second error term regarding the polar angle difference,

combined by the user-defined weight factor λ:

E(ri, zi, ϕi) =

N
∑

i=1

[

E2

r (ri, zi) + λE2

ϕ(ϕi)
]

(6)

The value of λ depends on the relative magnitudes of the error

terms Er and Eϕ. In all our experiments we have set λ = 0.03.

The first error term Er only depends on distances from the

camera, where ri is the distance of the object point i to the

camera and rmi
the distance to the camera of the intersection

point of the same line of sight with the model:

Er(ri, zi) =
ri − rmi

ziri

. (7)

The second error term Eϕ only depends on the polar angles:

Eϕ(ϕi) =
ϕi − ϕm

2
(1 + tanh |α(|ϕi − ϕmi

| − β)|) , (8)

where ϕm describes the polar angle of the centre of the model.

The hyperbolic tangent enforces continuity of the angular

error function and is required for the convergence behaviour

of the optimisation. The parameter β corresponds to about half

the angular width of the model projected into the image plane,

whereas α is a user defined parameter which influences the

optimisation behaviour. Error function (6) can be minimised

in the same manner as the Euclidean metric using a nonlinear

optimisation method.

III. EXPERIMENTAL EVALUATION

To obtain a reliable statement about the accuracy of the

pose estimation results, ground truth data are generated for



(a) Common Euclidean distance metric. (b) Polar distance metric.

Fig. 2. Comparison of the Euclidean distance metric (a) and the polar distance metric (b).

the sequences1. For this purpose, several coloured markers

have been attached to the vehicle. We used colour cameras for

image acquisition and a colour classifier to extract the markers

in the images. Afterwards a highly accurate corner detector

[15] estimates the corner positions in each image at subpixel

accuracy, which are used for bundle adjustment to compute

the three-dimensional world coordinates of each corner point.

Four markers are attached to each side of the vehicle, such

that the corresponding plane is overdetermined. Three colour

cameras with a resolution of 1034 × 776 pixels were used

for image acquisition. The cameras were mounted side by

side at different displacements, resulting in three different

baseline distances of 102, 228, and 380 mm. The frame rate

of the sequences is about 14 fps. The colour information is

only used for ground truth calculation, whereas for the stereo

algorithms the images were converted to greyscale images. Our

system performs a frame-by-frame pose estimation without

any temporal filtering (tracking-by-detection). The 3D point

cloud is clustered to obtain the scene part which represents

the vehicle. The first principal component of this point cloud

is used to initialise the angular pose parameter. The ICP-based

optimisation then yields the vehicle pose.

A pose estimation is accepted if the extension of the 3D

point cloud in x direction is at least 20% larger then the

vehicle width, otherwise the result is regarded as unreliable

because only a very small number of 3D points are present

on the longer side of the vehicle. We use seven different

sequences which represent typical intersection scenarios: a

vehicle passing straight through the intersection, and a vehicle

turning left or right with different velocities. The evaluation is

based on two geometric indicators: the yaw angle difference

∆Θ between the true yaw angle and the pose estimation

result and the mean distance of the ground truth points to the

corresponding model planes. The differences are visualised

using error bars which are based on the median of the full

sequence and the 25% and the 75% quantiles, respectively.

For most of the sequences the pose estimation yields reliable

results for about 90% of timesteps. Only in sequence 6 the

1Stereo image sequences and ground truth data are publicly available at
http://aiweb.techfak.uni-bielefeld.de/files/VehicleSequences2009.tgz

vehicle drives nearly parallel to the z axis, leading to a small

projected extension of the 3D point cloud in x direction, which

yields unreliable pose estimation results for more than 90% of

the frames of that sequence.

A. Baseline Distance

The first part of the evaluation analyses the different base-

line distances of the sequences. Fig. 3 shows the yaw angle

error and Fig. 4 the distance error for the three different

baseline distances for all seven sequences using the described

three different stereo approaches. The comparison between the

different baseline distances shows that the smallest baseline

is not sufficient for our application. Especially for vehicles

turning left or right in front of the camera (sequences 3

and 4) the errors are large. The largest baseline also produces

larger errors, since due to the large camera displacement and

the resulting parallax effects the stereo algorithms produce a

smaller number of correct correspondences.

B. Stereo Algorithm

To evaluate the different stereo algorithms, tracking results

are computed for all sequences with the intermediate baseline

distance and the Levenberg-Marquardt algorithm. Figs. 5 and 6

show the results of the different stereo algorithms, where both

distance metrics (Euclidean and polar) are evaluated.

The results for the yaw angle error show that the difference

between the pixel accurate feature-based stereo and the other

two algorithms with subpixel accuracy is negligible. The

results are similar for all three stereo algorithms.

However, regarding the vehicle position, a difference be-

tween pixel and subpixel accuracy is noticeable. The distances

of the feature-based stereo results show an up to three times

higher error for sequences 1, 2, and 3. No significant difference

between the spacetime stereo and the correlation-based stereo

can be found.

C. Distance Metric

Figs. 5 and 6 show the pose estimation errors for the

two distance metrics. For the position error both metrics

have a similar performance, whereas the polar distance metric

produces a smaller yaw angle error for most sequences. The
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Fig. 3. Dependence of the yaw angle error on the stereo baseline, Levenberg-Marquardt optimisation, polar distance metric. Blue colour denotes the spacetime
stereo technique (STS), red colour the feature based stereo (FBS), and green colour the correlation-based stereo (CBS). The small baseline is marked by
squares, the intermediate baseline by crosses, and the large baseline by circles. The intermediate baseline distance is most favourable with respect to the yaw
angle error.
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Fig. 4. Dependence of the distance error on the stereo baseline, Levenberg-Marquardt optimisation, polar distance metric. Colours and markers as in Fig. 3.
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Fig. 5. Dependence of the yaw angle error on the stereo algorithm, Levenberg-Marquardt optimisation, intermediate stereo baseline. The colours (blue, red,
and green) denote the stereo algorithm, while diamonds represent the polar metric and stars the Euclidean metric.
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Fig. 6. Dependence of the distance error on the stereo algorithm, Levenberg-Marquardt optimisation, intermediate stereo baseline. Colours and markers as
in Fig. 5.

computation time for the polar metric is the same as for the

Euclidean metric.

D. Optimisation Algorithm

The results of the Downhill-Simplex optimisation are shown

in Fig. 7 for the yaw angle error and in Fig. 8 for the error of

the average distance between the ground truth points and the

corresponding model planes.

The yaw angle errors are all higher for the Downhill-

Simplex algorithm. Considering that the number of function

calls of the Levenberg-Marquardt algorithm is of the same

order of magnitude (about 100 function calls) as for the

Downhill-Simplex algorithm with a better pose estimation

accuracy, the Levenberg-Marquardt algorithm appears to be

preferable. The distance errors show a similar behaviour.

IV. SUMMARY AND CONCLUSION

In this study we have introduced an approach for three-

dimensional vehicle pose estimation using a stereo camera.

After stereo and optical flow computation on the investigated

scene, a four-dimensional clustering approach separates the

static from the moving objects in the scene. The iterative
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Fig. 7. Yaw angle error for Downhill-Simplex optimisation, intermediate stereo baseline. Colours and markers as in Fig. 5.
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Fig. 8. Distance error for Downhill-Simplex optimisation, intermediate stereo baseline. Colours and markers as in Fig. 5.

closest point algorithm (ICP) estimates the vehicle pose using

a cuboid as a weak vehicle model. In contrast to classical

ICP optimisation a polar metric was used which takes into

account the properties of the stereo measurement process.

We have followed the tracking-by-detection approach such

that no temporal filtering (e.g. Kalman Filtering) has been

applied. The algorithm has been tested on seven different real-

world sequences where different stereo algorithms, different

baselines, different distance metrics and different optimisation

algorithms have been evaluated.

The evaluation shows that for obstacles in a range between

10 and 30 m in front of the ego-vehicle, the intermediate

baseline distance of 228 mm is preferable. In that scenario

a subpixel accurate stereo algorithm yields up to three times

higher distance accuracies when compared to a pixel accu-

rate algorithm. To minimise the point distances in the ICP

algorithm, the Levenberg-Marquardt algorithm yields better

accuracies than the Downhill-Simplex optimisation while the

number of function calls is comparable. The proposed polar

distance metric is preferable to the Euclidean distance metric

as for most sequences it yields a higher accuracy of the

estimated yaw angle, especially for the pixel accurate stereo

algorithm. If this most favourable configuration is employed,

the pose estimation yields yaw angle errors typically smaller

than 3 degrees and absolute distance errors of about 0.1 m,

corresponding to relative distance errors around 0.5%.
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[11] B. Barrois and C. Wöhler, “Spatio-temporal 3d pose estimation of
objects in stereo images,” in 6th International Conference on Computer

Vision Systems (ICVS), 2008.
[12] P. J. Besl and N. D. McKay, “A method for registration of 3-d shapes,”

IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 14, no. 2, pp. 239–256, February 1992. [Online]. Available:
http://portal.acm.org/citation.cfm?id=132022

[13] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes in C: The art of scientific computing. Cambridge
University Press, 1992.

[14] Z. Zhang, “Iterative point matching for registration of free-
form curves,” INRIA, Tech. Rep., 1992. [Online]. Available:
ftp://ftp.inria.fr/INRIA/publication/publi-ps-gz/RR/RR-1658.ps.gz
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