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Abstract

The recognition and prediction of intersection situ-
ations and an accompanying threat assessment are an
indispensable skill of future driver assistance systems.
This study focuses on the recognition of situations in-
volving two vehicles at intersections. For each vehi-
cle, a set of possible future motion trajectories is esti-
mated and rated based on a motion database for a time
interval of 2–4 s ahead. Possible situations involving
two vehicles are generated by a pairwise combination
of these individual motion trajectories. An interaction
model based on the mutual visibility of the vehicles and
the assumption that a driver will attempt to avoid a
collision is used to rate possible situations. The cor-
respondingly favoured situations are classified with a
probabilistic framework. The proposed method is eval-
uated on a real-world differential GPS data set acquired
during a test drive of ∼10 km, including three road in-
tersections. Our method is typically able to recognise
the situation correctly about 1.5–3 s before the distance
of the vehicles to the intersection centre becomes mini-
mal.

1. Introduction

The recognition of the situation into which a vehi-
cle is currently involved is an important information
for an advanced driver assistance system (ADAS). The
goal of such systems is to increase passenger comfort
and safety by supporting the driver with environmen-
tal information such as the current and expected fu-
ture behaviour of traffic participants and obstacles (cf.
e.g. [4, 5]). Of particular interest are cooperative situ-
ations, where an ADAS estimates and predicts the mo-
tion states of the traffic participants, performs a threat
assessment [2], and considers the possible interaction
behaviour [1].

In this study, we regard the interaction between pairs
of vehicles in order to recognise the current situation
and provide a prediction for the next few seconds.
We furthermore introduce a threat assessment approach
based on an interaction model motivated by the idea of
a rating of each predicted situation according to the mu-
tual visibility of the vehicles.

2. Motion Representation and Motion
Database

In our system we utilise the long-term motion pre-
diction framework presented in [3, 6]. The motion pat-
terns of vehicles are represented by trajectories, which
are defined as ordered tuples combining states (position,
yaw angle, velocity, yaw rate) with a time stamp. Our
basic approach in this study is to learn motion patterns
by building a motion database consisting of observed
trajectories. As a measure for the similarity between
trajectories we use the quaternion-based rotationally in-
variant longest common subsequence (QRLCS) met-
ric. A particle filter framework simultaneously tracks a
large number of motion hypotheses and assigns a likeli-
hood value to them. Knowledge about the lane geome-
try extracted from a map is used for penalising unlikely
predictions such as those crossing the edge of the road.

3. Situation Classification

A situation depends on the temporal behaviour of
two or more traffic participants acting dependent on
each other. For simplification, it is assumed here that
two vehicles A and B approach an intersection from
different directions at the same moment in time. The in-
tersection is taken to consist of two perpendicular roads.
At this point, the predicted motion of each vehicle does
not yet depend on the motion of the other vehicles. In
the context of the particle filter, at every time step the



Figure 1. Two different situations (left and
right) resulting from different individual
motion predictions (centre).

motion prediction yields for both vehicles a set of future
trajectories X(1)

A , ..., X
(N)
A and X(1)

B , ..., X
(M)
B with as-

sociated likelihoods P (1)
A , ..., P

(N)
A and P (1)

B , ..., P
(M)
B .

Each trajectory is the concatenation of a “history part”
and a “prediction part”. Both parts have the same
temporal length of 2.5 s, where the history part is
identical for all predicted trajectories of the same
vehicle. A trajectory pair (X(n)

A , X
(m)
B ) represents

one possible situation with the occurrence probability
P (nm) = P

(n)
A P

(m)
B as long as the vehicle move-

ments are regarded as mutually independent. We as-
sume that the vehicles are able to turn right (R),
turn left (L), or drive straight on (G), which results
in the set Ω of possible situation classes with Ω =
{LL,LG,LR,RL,RG,RR,GL,GG,GR}.

An example of two predicted situations is depicted in
Fig. 1 using real trajectory data. Each pair of motion tra-
jectories (X(n)

A , X
(m)
B ) yields a so-called multiple par-

ticipant trajectory (MPT) T (nm) which consists of dif-
ference components of the yaw angles and velocities of
two vehicles. A Chebyshev decomposition [7] is ap-
plied to each of these feature trajectories, resulting in a
merged coefficient vector T(nm)

c . In order to infer the
current situation class, we use a hierarchical classifier
structure. The approaching directions of the vehicles
are determined based on their yaw angles. For each of
the three cases shown in Fig. 2, a polynomial classifier
is trained based on a labelled set of MPTs. Confidence
mapping [8] is applied to transform classifier outputs
into probabilities Qk(T(nm)

c ) with k = 1, . . . , 9 for
each situation class k. The overall probability W (k)
for situation class k is given by

W (k) = ηw

N∑
n=1

M∑
m=1

ρ(nm) P (nm)Qk(T(nm)
c ) (1)

with ηw as a normalisation constant. To take into ac-
count the interaction between the traffic participants, the
occurrence probability P (nm) is extended by an interac-
tion weight ρ(nm) in Eq. (1) which is described in the
following section.

(a) Case 1 (b) Case 2 (c) Case 3

Figure 2. Cases of initial orientation.

(a) (b)

Figure 3. Definition of the visibility angles
α and β.

4. Interaction Model, Threat Assessment

We propose an interaction model based on the as-
sumptions that (i) all drivers have the intention to avoid
a collision and (ii) that the threat increases when the
position of one vehicle is outside the main viewing di-
rection of the driver of the other vehicle. The aim of the
interaction model is to decrease the weight of trajectory
pairs which lead to a collision as long as the mutual
visibility is high and the time to collision t(nm)

c is sig-
nificantly longer than a suitably chosen interaction time
scale t(nm)

r . Thus, we introduce for ρ(nm) the relation

ρ(nm) = (1− ρmin) e
− 1

2

(
t
(nm)
c

t
(nm)
r

)2

+ ρmin (2)

with ρmin as the minimum possible weight value. The
time to collision t(nm)

c is determined based on the tra-
jectory pair (nm). If no collision occurs we have
ρ(nm) = 1.

The visibility constraint is proposed in [2] as a cri-
terion for threat assessment. In our model, the viewing
direction of each driver is approximated by the “focus
vector” pf from the current position of the correspond-
ing vehicle to its predicted position in 2 s, i.e. we as-
sume that the view of the driver is focused on the di-
rection into which the corresponding vehicle is moving.
We use the angles α(nm) and β(nm) according to Fig. 3
between the focus vectors pfA and pfB and the vectors
pB and pA pointing to the other vehicle, respectively,
as measures for the mutual visibilities, where the inter-



action time scale is assumed to be proportional to the
mean value of the individual visibilities according to

t(nm)
r =

1
2 b

(
α(nm) + β(nm)

)
(3)

with b = 0.6 as an empirically chosen constant. The
interaction time scale and the probability of a collision
trajectory pair (nm) to occur increases with decreas-
ing visibility ρ(nm) due to increasing angles α(nm) and
β(nm).

The overall collision probability Wcoll is given by

Wcoll =
N∑

n=1

M∑
m=1

ρ(nm) P (nm) P (C|T (nm)) (4)

with P (C|T (nm)) ∈ {1, 0}, where 1 denotes the occur-
rence of a collision for trajectory pair (nm) and 0 the
absence of a collision.

5. Evaluation

The data set used in the evaluation consists of real-
world differential GPS positions acquired during a test
drive of about 10 km. It includes three intersections
with vehicles approaching from all possible directions,
respectively. The test vehicle with the differential GPS
sensor had no further sensors for environment percep-
tion. In order to construct a situation at an intersection,
we therefore synchronised two separately recorded ma-
noeuvres. Since the individual motion trajectories were
acquired in real traffic, we expect the correspondingly
constructed situations to be fairly realistic.

Time t = 0 is defined as the moment in time when
both vehicles have passed their minimum distance to
the centre of the intersection. For each test situation,
we determine the earliest moment in time at which the
situation class according to Eq. (1) is recognised cor-
rectly. The number of particles in the particle filter has
been set to 50, all other parameters of the motion pre-
diction framework described in Section 2 are identical
to those in [6]. Specifically, the influence of the interac-
tion model on the threat assessement is examined based
on two situations in which one of the vehicles ignores
the right of way of the other vehicle.

5.1. Prediction of Situation Classes

For each situation class k the probability W (k)
is estimated by the polynomial classifier according to
Eq. (1). We define the certainty γkr of a situation class
kr = argmaxk∈ΩW (k) by its difference to the situ-
ation class with the second-largest probability kr2 =

Table 1. Results of situation prediction for
two vehicles. The class indices denote
the initial orientation case according to
Fig. 2.

Class I1 [s] I2 [s] I3 [s] median [s]
GG1 −2.54 −3.26 −2.66 −2.66
GG2 −2.62 −2.20 −2.82 −2.62
GG3 −1.90 −2.00 −2.12 −2.00
GL1 −3.18 −1.80 −3.30 −3.18
GL2 −2.76 −2.22 −2.80 −2.76
GL3 −2.48 −2.40 −3.08 −2.48
GR1 −3.20 −1.08 −3.64 −3.20
GR2 −2.24 −2.06 −1.50 −2.06
GR3 −1.56 −2.08 −1.68 −1.68
LG1 −2.90 −1.46 −3.86 −2.90
LG2 −2.50 −1.10 −2.66 −2.50
LG3 −2.58 −1.20 −0.96 −1.20
LL1 −1.02 −1.52 −4.49 −1.52
LL2 −1.68 −1.38 −3.56 −1.68
LL3 −1.48 −0.50 −1.12 −1.12
LR1 −1.64 −1.54 −2.96 −1.64
LR2 −1.68 −1.54 −3.24 −1.68
LR3 −0.38 −1.28 −1.90 −1.28
RG1 −0.62 −2.68 −3.68 −2.68
RG2 −1.24 −3.40 −4.14 −3.40
RG3 −1.32 −1.28 −2.34 −1.32
RL1 −1.52 −1.10 −2.36 −1.52
RL2 −1.86 −1.88 −1.62 −1.86
RL3 −0.28 −1.36 −1.72 −1.36
RR1 −1.82 −2.32 −2.12 −2.12
RR2 −1.70 −1.56 −3.78 −1.70
RR3 −1.88 −2.44 −0.64 −1.88

argmaxk∈Ω\{kr}W (k) as γkr
= W (kr)−W (kr2). If

γkr exceeds the empirically chosen threshold of 0.2, the
recognised situation class is accepted. At each test in-
tersection In for each initial orientation case (cf. Fig. 2)
and each situation class a representative scenario was
generated based on the individual trajectories. Table 1
displays the values of trec indicating the moment in time
from which on the situation is classified correctly ac-
cording to the γkr

criterion until the end of the situation
at t = 0. The values of trec for a certain intersection
In were obtained using the trajectories of the other two
intersections Im 6=n as training data in a leave-one-out
manner. The values in Table 1 were inferred from sin-
gle runs of the particle filter. We found that the stan-
dard deviation of trec is typically of the order 0.3 s. The
fact that all obtained trec values are negative indicates



that all examined 81 situations have been successfully
recognised at the end. Some situation predictions are
rather late, especially for intersection I1. This observa-
tion can be explained by the fact that the lanes of inter-
section I1 are wider than those of the other intersections
and turning manoeuvres are thus initiated later. The me-
dian values of trec are between −1.1 s and −3.4 s, indi-
cating a reasonably early correct prediction.

5.2. Influence of the Visibility Constraint

A typical hazardous situation occurs when one vehi-
cle ignores the right of way of the other vehicle. Two
typical scenarios of such collision situations are shown
in Fig. 4. If we consider the collision detection for both
situations according to Eq. (4), the threat given byWcoll

begins to increase towards its final value of 1 by about
0.2 s earlier for situation 2. This behaviour is due to
the fact that situation 2 is characterised by a lower mu-
tual visibility since early in the course of the situation,
the focus vector of the red vehicle is directed towards
the intersecting road rather than towards the blue vehi-
cle. In situation 1, the focus vector of the red vehicle is
always directed towards the blue vehicle and vice versa
until the mutual distance has become very low. The cor-
rect situation class is recognised for these two situations
at trec = −1.30 s and trec = −1.84 s, respectively.

6. Summary and Conclusion

In this study we have regarded the recognition and
predictions of situations involving two vehicles at in-
tersections. For each vehicle, a set of possible future
motion trajectories is estimated and rated based on a
motion database for a time interval of 2–4 s ahead. Pos-
sible situations involving two vehicles have been gen-
erated by a pairwise combination of individual motion
trajectories. An interaction model based on mutual vis-
ibility and the assumption that a driver will attempt to
avoid a collision have been used to rate the possible sit-
uations. The correspondingly favoured situations have
been classified with a probabilistic framework. The pro-
posed method has been evaluated on a real-world dif-
ferential GPS data set acquired during a test drive of
∼ 10 km, including three different road intersections.
Our method is typically able to recognise the situations
correctly about 1.5–3 s before the distance of the vehi-
cles to the intersection centre becomes minimal.
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