
3D Scene Segmentation and Object Tracking in
Multiocular Image Sequences
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Abstract. In this contribution we describe a vision-based system for
the 3D detection and tracking of moving persons and objects in complex
scenes. A 3D point cloud of the scene is extracted by a combined stereo
technique consisting of a correlation-based block-matching approach and
a spacetime stereo approach based on spatio-temporally local intensity
modelling, resulting in a 3D point cloud attributed with motion infor-
mation. For localising persons and objects in the scene the point cloud is
segmented into clusters by applying a hierarchical clustering algorithm,
using velocity information as an additional discrimination criterion. Ini-
tial object hypotheses are obtained by partitioning the observed scene
with cylinders, including the tracking results of the previous frame. Mul-
tidimensional unconstrained nonlinear minimisation is then applied to
refine the initial object hypotheses, such that neighbouring clusters with
similar velocity vectors are grouped to form a compact object. A particle
filter is applied to select hypotheses which generate consistent trajecto-
ries. The described system is evaluated based on real-world sequences
acquired in an industrial production environment and from a tabletop
scene, using manually obtained ground truth data. We find that even
in the presence of moving objects closely neighbouring the person, all
objects are detected and tracked in a robust and stable manner. The av-
erage tracking accuracy is of the order of several percent of the distance
to the scene.

1 Introduction

Three-dimensional (3D) vision plays an important role in human perception,
especially for the recognition of motion and the ability to track objects over time.
It is advantageous for vision systems to make use of this very basic information
in order to perceive and interprete the environment.

An efficient approach to obtain 3D information about the scene without the
need to place markers or to constrain the appearance of objects is stereo vision.
A classical stereo vision algorithm is the block-matching approach [1–4]. At each
pixel of, say, the left image, a rectangular window is centered on the position



of that pixel. The algorithm computes the disparity value for that pixel by
determining in the right image the window of identical size on the same epipolar
line for which a similarity measure, e.g. the sum of squared differences (SSD),
obtains an optimum. A stereo vision algorithm that constructs dense depth maps
uses Dynamic Programming [5]. It makes use of the ordering constraint, which
requires that for opaque surfaces, the order of neighbouring correspondences on
two corresponding epipolar lines is always preserved. Both previously described
stereo vision approaches process each epipolar line independently. In contrast,
the graph cut or maximum flow method optimises the solution globally. Instead
of the ordering constraint, a more general local coherence constraint is assumed
which claims that disparities tend to be locally similar. The correspondence
problem can then be formulated as a maximum-flow problem in a graph [6].
Real-time stereo vision systems like those presented in [2] or [4] rely on the
principle of establishing correspondence e.g. by computation of SSD. For speed-
up, making use of several resolution levels [2] often turns out to be useful, as
well as heuristics such as suppression of uniform image regions by employing an
interest operator and checking for left-right consistency. The approach described
in [2] is extended in [3] by tracking 3D points individually in a six-dimensional
position-velocity space, thus extracting motion information during an additional
processing step after correspondence analysis. While virtually all classical stereo
vision approaches do not make use of image sequences, recent work [7] describes
a block-matching spacetime stereo vision scheme which relies on pairs of image
sequences rather than just pairs of images.

Depending on the number of available cameras, different methods for local-
ising people in a scene can be applied. Using a single camera, a pedestrian is
detected based on the appearance of a human [8] and it is possible to auto-
matically initialise a tracker and roughly estimate the pose, representing body
segments as 2D image patches [9]. If 3D data are available, e.g. from wide base-
line stereo, localisation and tracking can be performed by mean shift clustering
of the point cloud [10]. This system, however, is sensitive to noisy 3D data. For
close-up observation of humans, a detailed articulated body model can be fitted
to the generated 3D point cloud to estimate the pose of the human [11, 12]. Even
human body tracking solely based on 2D image data is possible, but either strong
models [13] or uncluttered background and multiple cameras [14] are needed.

2 3D scene analysis

In this section we will present our system for localising and tracking people
and moving objects in an attributed 3D point cloud and discuss the underly-
ing assumptions. We will employ a combination of a bottom-up approach for
spatio-temporal scene segmentation and weak models for generation of object
hypotheses in order to permit the detection of arbitrary objects. This approach
allows task-dependent interpretation without incorporating strong models, which
would restrain perception or require prior knowledge about the appearance or
structure of the scene.



2.1 Correlation-based block-matching stereo algorithm

As a first stereo analysis algorithm, we employ the real-time block-matching
approach described in [2]. We assume that the cameras are calibrated and the
images are rectified to standard stereo geometry with epipolar lines parallel to the
image rows [15]. For each interest pixel in the left image for which a sufficiently
high intensity gradient is observed, a corresponding point is searched along the
epipolar line in the right image. We use the sum of squared differences (SSD)
as a similarity measure. A square region around the interest pixel in the left
image is compared with regions on the corresponding epipolar line in the right
image for all candidate disparities, resulting in an array of correlation coefficients.
The disparity corresponding to the minimum SSD value is determined, and a
parabola is fitted to the local neighbourhood of each maximum, yielding the
disparity value at subpixel accuracy. Only well localised correspondences are
considered for further processing.

2.2 Spacetime stereo based on local intensity modelling

Our second stereo approach exploits the spatio-temporal structure of the ac-
quired sequence of image pairs. To the local spatio-temporal neighbourhood of
each interest pixel a parameterised function h(P , u, v, t) is adapted, where u
and v denote the pixel coordinates, t the time coordinate, and P the vector of
function parameters.

Ideally, an object boundary is described by an abrupt intensity change. In
real images, however, one does not observe such discontinuities since they are
blurred by the point spread function of the optical system. Therefore, we model
the intensity change at an object boundary by a “soft” sigmoid function like the
hyperbolic tangent. As we cannot assume the image regions inside and outside
the object to be of uniform intensity, we model the intensity distribution around
an interest pixel by a combined sigmoid-polynomial approach:

h(P , u, v, t) = p1(v, t) tanh [p2(v, t)u + p3(v, t)] + p4(v, t). (1)

The terms p1(v, t), p2(v, t), p3(v, t), and p4(v, t) denote polynomials in v and t.
The polynomial p1(v, t) describes the amplitude and p2(v, t) the steepness of
the sigmoid function, which both depend on the image row v, while p3(v, t)
accounts for the row-dependent position of the model boundary. The value of
p2(v, t) is closely related to the sign of the intensity gradient and to how well
it is focused, where large values describe sharp edges and small values blurred
edges. The polynomial p4(v, t) is a spatially variable offset which models local
intensity variations across the object and in the background, e.g. allowing the
model to adapt to cluttered background. All described properties are assumed
to be time-dependent. Interest pixels for which no parametric model of adequate
quality is obtained are rejected if the residual of the fit exceeds a given threshold.

The parametric model according to Eq. (1) in its general form requires that a
nonlinear least-mean-squares optimisation procedure is applied to each interest



pixel, which may lead to a prohibitively high computational cost of the method.
Is is possible, however, to transform the nonlinear optimisation problem into a
linear one by assuming that (i) the offset p4(v, t) is proportional to the average
pixel intensity Ī of the spatio-temporal neighbourhood of the interest pixel, i.e.
p4(v, t) = wĪ, and (ii) the amplitude p1(v, t) of the sigmoid is proportional to
the standard deviation σI of the pixel intensities in the spatio-temporal neigh-
bourhood with p1(v, t) = kσI . These simplifications yield the model equation

p2(v, t)u + p3(v, t) = artanh
[
I(u, v, t)− wĪ

kσI

]
≡ Ĩ(u, v, t), (2)

where the model parameters, i.e. the coefficients of the polynomials p2(v, t) and
p3(v, t), can be determined by a linear fit to the transformed image data Ĩ(u, v, t).
Pixels with

∣∣[I(u, v, t)− wĪ
]
/ [kσI ]

∣∣ > θ are excluded from the fit, where θ is
a user-defined threshold with θ < 1, since arguments of the artanh function
close to 1 would lead to a strong amplification of noise in the original pixel
intensities I(u, v, t). The factors k and w are further user-defined parameters of
the algorithm.

The intensity gradient obtains its maximum value in horizontal direction at
the root ue(v, t) = −p3(v, t)/p2(v, t) of the hyperbolic tangent. The horizontal
position of the intensity gradient at the current time step for the epipolar line
on which the interest pixel is located is given by the value ue(vc, tc), where the
index c denotes the centre of the local neighbourhood of the interest pixel. The
direction δ of the intensity gradient is given by δ = ∂ue/∂v. The velocity µ of the
intensity gradient along the epipolar line corresponds to the temporal derivative
µ = ∂ue/∂t of the location of the epipolar transection. Both derivatives are
computed at vc and tc.

For correspondence analysis, the SSD similarity measure is adapted to our
algorithm by comparing the fitted functions h(P l, u, v, t) and h(P r, u, v, t) rather
than the pixel intensities themselves, where the indices l and r denote the left
and the right image, respectively:

S =
∫ [

h(P l, u− ul
e(vc, tc), v, t)− h(P r, u− ur

e(vc, tc), v, t)
]2

du dv dt, (3)

where u, v, and t traverse the local spatio-temporal neighbourhood of the left
and the right interest pixel, respectively. Once a correspondence between two in-
terest pixels on the same epipolar line has been established by searching for the
best similarity measure, the disparity d corresponds to d =

[
ul

i + ul
e(vc, tc)

]
−

[ur
i + ur

e(vc, tc)] with ul
i and ur

i as the integer-valued horizontal pixel coordinates
of the left and the right interest pixel, respectively. Given the optical and geo-
metrical parameters of the camera system, the velocity components parallel to
the epipolar lines and along the depth axis can be computed directly in metres
per second from the values µ̄ =

(
µl + µr

)
/2 and ∂d/∂t = µl − µr.
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Fig. 1. (a) Original image (left camera), (b) background subtracted image, (c) full
correspondence stereo point cloud, (d) reduced motion-attributed point cloud.

2.3 Motion-attributed point cloud

Both described stereo techniques generate 3D points based on edges in the image,
especially object boundaries. Due to the local approach they are independent of
the object appearance. While correlation stereo has the advantage of higher spa-
tial accuracy and is capable of generating more point correspondences, spacetime
stereo provides a velocity value for each stereo point. However, it generates a
smaller number of points and is spatially less accurate, since not all edges are
necessarily well described by the model defined in Eq. (1). Taking into account
these properties of the algorithms, the results are merged into a single motion-
attributed 3D point cloud. For each extracted 3D point ck an average velocity
v̄(ck) is calculated, using all spacetime points sj , j ∈ (1, . . . , J) in an ellipsoid
neighbourhood defined by δS(sj , ck) < 1 around ck. To take into account the
spatial uncertainty in depth direction of the spacetime data, δS(sj , ck) defines a
Mahalanobis distance whose correlation matrix Σ contains an entry Σz 6= 1 for
the depth coordinate which can be derived from the recorded data.

v̄(ck) =
ρ

J

J∑
j=1

v(sj) ∀ sj : δS(sj , ck) < 1 (4)

The factor ρ denotes the relative scaling of the velocities with respect to the spa-
tial coordinates. It is adapted empirically depending on the speed of the observed
objects. This results in a 4D point cloud, where each 3D point is attributed with
an additional 1D velocity component parallel to the epipolar lines, see Fig. 1(d).

A reference image of the observed scene is used to reduce the amount of data
to be processed by masking out 3D points that emerge from static parts of the
scene, as shown in Fig. 1(a,b). Furthermore, only points within a given interval
above the ground plane are used, as we intend to localise objects and humans
and thus always assume a maximum height for objects above the ground.



(a) (b)

Fig. 2. (a) Over-segmentation and cluster velocities, (b) objects with convex hull.

2.4 Over-segmentation for motion-attributed clusters

To simplify the scene representation, we apply a hierarchical clustering algo-
rithm, recognising small contiguous regions in the cloud, based on features like
spatial proximity or homogeneity of the velocities. This procedure deliberately
over-segments the scene, generating motion-attributed clusters. By incorporating
velocity information for clustering, we expect an improvement in segmentation
at these early stages of the algorithm, without needing strong models to en-
sure separation of neighbouring objects. For clustering, we apply the complete
linkage algorithm [16], also called furthest neighbour, to describe the distance
between two clusters. The resulting hierarchical tree is partitioned by selecting
a clustering threshold and addressing each subtree as an individual cluster, see
Fig. 2(a). The criterion for selecting the threshold is the increase in distance
between two adjacent nodes in the tree, for which a maximum allowed value is
determined empirically. For each resulting cluster l, the weight w(l) is set ac-
cording to the number of points P belonging to l: w(l) =

√
P . The square root

is used to constrain the weight for clusters consisting of many points. For each
cluster the mean velocity of all points belonging to it is determined.

2.5 Generation and tracking of object hypotheses

From here on, persons and objects can be represented as a collection of clusters of
similar velocity within an upright cylinder of variable radius. An object hypoth-
esis R(a) is represented by a four-dimensional parameter vector a = [x y v r],
with x and y being the centre position of the cylinder on the ground plane, v
denoting the velocity of the object and r the radius. This weak model is suitable
for persons and most encountered objects.

To extract the correct object positions, we utilise a combination of parameter
optimisation and tracking. We first generate a number of initial hypotheses, opti-
mise the location in parameter space, and then utilise the tracking algorithm to



Fig. 3. Error function plot for minimisation, showing the XY error surface for
v = 0.26 m s−1, r = 0.53 m (blue), and v = −0.79 m s−1, r = 0.53 m (green,
values mirrored for clearer display).

select hypotheses which form consistent trajectories. Initial object hypotheses
are created at each time step by partitioning the observed scene with cylin-
ders and by including the tracking results from the previous frame, respectively.
Multidimensional unconstrained nonlinear minimisation [17] is applied to refine
the position and size of the cylinders in the scene, so that as many as possible
neighbouring clusters with similar velocity values can be grouped together to
form compact objects, as shown in Fig. 2(b). An error function f(a) used for
optimisation denotes the quality of the grouping process for a given hypothesis.
Each hypothesis is weighted based on the relative position, relative velocity, and
weight of all clusters l within the cylinder R(a) using Gaussian kernels:

f(a) = fr(a)
∑

l∈R(a)

w(l)fd(l, a)fv(l, a) (5)

with fr(a) = exp
(
− r(a)2

2H2
r,min

)
− exp

(
− r(a)2

2H2
r,max

)
keeping the radius in a realistic

range, fd(l) = exp
(
− [s(l)−s(a)]2

2H2
d

)
reducing the importance of clusters further

away from the cylinder centre, and fv(l, a) = exp
(
− [v(l)−v(a)]2

2H2
v

)
masking out

clusters having differing velocities. The functions r(a), s(a), and v(a) extract the
radius, the 2D position on the ground plane and the velocity of the hypothesis a
respectively. The kernel widths H are determined empirically. Fig. 3 shows the
error function from Eq. (5), parameterised for opposing velocities. Local minima
are centred on top of the objects of interest.

After optimisation, hypotheses with identical parameterisation are merged
and those without any clusters within R(a) are removed. The remaining hypothe-
ses are tracked over time using a particle filter, keeping only object hypotheses
forming a consistent trajectory.
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Fig. 4. Trajectories of tracked objects (blue) with annotated ground truth (yellow):
(a) tabletop and (b) industrial scene.

3 Evaluation

For evaluation of our system, we used two types of real-world image sequences
recorded with a PointGrey Digiclops multiple CCD camera system with an image
size of 640× 480 pixels, a pixel size of 7.4 µm, and a focal length of 4 mm. The
stereo baseline corresponds to 100 mm. One sequence displays a moving toy car
on a table driving past static objects, the other sequences an industrial working
cell with a human worker, a robot, and a moving platform. The distance to the
scene is 1.47 m for the tabletop sequence and 5.65 m for the industrial sequences.

We empirically found for the correlation matrix element Σz in Eq. (4) the
value Σz = 0.292, regarding a set of 3D points obtained with the spacetime
stereo algorithm and belonging to a plane scene part, while Σx = Σy = 1 are
equally scaled. The velocity scaling factor is set to ρ = 380 s, where the ve-
locity is expressed in metres per second and the spatial coordinates in metres.
The kernel widths for Eq. (5) are chosen as Hr,max = 1.88 m, Hr,min = 0.135 m,
Hd = 0.113 m, and Hv = 0.188 m for the industrial scenes. While the object sizes
as well as the overall size of the scenes are far different, the kernel widths merely
need to be scaled by an empirical uniform factor, such that the relative pa-
rameter values remain constant. The value of ρ depends on the typical velocities
encountered in the scene. Hence, we set for the tabletop scene Hr,max = 4.14 m,
Hr,min = 0.297 m, Hd = 0.249 m, Hv = 0.414 m, and ρ = 3200 s.

For each sequence, ground truth was generated manually by marking the
center of the objects of interest in each frame, e. g. the head of the person
or the center of the car, and transforming them into 3D coordinates using the
known geometry of the scene and the objects, e.g. the tallness of the person
and the position of the ground plane. The trajectories of the tracked objects are
compared to the ground truth based on the corresponding value of the root mean
square error (RMSE). The results in Table 1 show that objects can be tracked in



with velocity without velocity
seq. # pic. object RMSE % tracked RMSE % tracked

tabletop 95 car 2.45 100.0 2.59 100.0

person 26.5 100.0 38.3 84.8
industry1 69 table 60.3 100.0 21.8 69.7

robot 87.8 95.5 111.8 98.5

person 42.7 100.0 31.8 94.8
industry2 79 table 43.5 100.0 27.5 100.0

robot 12.1 98.7 17.7 96.1

person 19.6 100.0 14.7 100.0
industry3 24 table 24.9 100.0 22.5 90.9

robot 17.1 100.0 29.3 100.0

person 24.7 75.7 35.2 89.2
industry4 39 table 27.0 100.0 24.5 97.3

robot 9.1 100.0 20.0 97.3

person 20.8 90.9 25.4 81.8
industry5 24 table 21.9 100.0 32.9 100.0

robot 8.6 77.3 33.1 100.0

Table 1. Tracking results compared to ground truth. RMSE is given in centimetres.

a stable manner at reasonable accuracy. Using velocity as an additional feature
yields a more accurate localisation result for 10 of 16 detected objects, and
detection is usually possible in a larger fraction of the frames. For four other
objects the RMSE but at the same time also the detection rate is lower when
velocity information is neglected. The system is designed to segment the point
cloud into clusters of differing velocity. As a consequence, the proposed system
works best for objects with homogeneous velocity. For example, we observed that
for a walking person moving the arms backwards the object hypothesis does not
contain the arms. As it is illustrated by the trajectories in Fig. 4, the system is
able to track objects and persons in a top-view surveillance setup as well as in
a side-view setup.

4 Conclusion and outlook

In this paper we have described a vision-based system for 3D detection and
tracking of moving persons and objects in complex scenes. By combining cor-
relation and spacetime stereo results, robust clustering of neighbouring objects
in a motion-attributed 3D point cloud can be achieved. Objects and persons
in the scene are localised and tracked incorporating velocity information. Our
evaluation verifies the applicability of the system to different scenarios and the
advantage of using velocity information as an additional clustering criterion. The
localisation accuracy amounts to a few centimetres for the tabletop scene and
is of the order 0.1–0.3 m for the industrial scenes. Only the velocity compo-
nent along epipolar lines is taken into account, since no significant radial motion
occurs in the regarded scenes. Perpendicular motion components could be inte-
grated using a second camera pair. Future work will address the analysis of our



system with respect to segmentation quality in the presence of noisy velocity
information and its applicability in the field of model-based body pose tracking.

References

1. Faugeras, O.: Three-Dimensional Computer Vision: A Geometric Viewpoint. MIT
Press, Cambridge, Massachusetts (1993)

2. Franke, U., Joos, A.: Real-time stereo vision for urban traffic scene understanding.
In: Conf. on Intelligent Vehicles, Detroit, IEEE (2000)

3. Franke, U., Rabe, C., Badino, H., Gehrig, S.K. Lecture Notes in Computer Sci-
ence 3663. In: 6D-Vision: Fusion of Stereo and Motion for Robust Environment
Perception. Pattern recognition. proc. 27th dagm symposium, vienna, austria edn.
Springer-Verlag Berlin Heidelberg (2005) 176–183

4. Hirschmueller, H.: Improvements in real-time correlation-based stereo vision. In:
Int. Conf. on Computer Vision and Pattern Recognition, Stereo Workshop, Hawaii
(2001)

5. Cox, I., Hingorani, S., Rao, S.: A maximum likelihood stereo algorithm. Computer
Vision and Image Understanding vol.63(3) (1996)

6. Roy, S., Cox, I.: A maximum-flow formulation of the n-camera stereo correspon-
dence problem. In: Int. Conf. on Computer Vision, Bombay (1998) 492–499

7. Davis, J., Nehab, D., Ramamoorthi, R., Rusinkiewicz, S.: Spacetime stereo: A
unifying framework for depth from triangulation. IEEE Trans. Pattern Analysis
and Machine Intelligence vol.27(2) (2005)

8. Viola, P., Jones, M., Snow, D.: Detecting pedestrians using patterns of motion and
appearance. Technical report, Mitsubishi Electric Research Lab Technical Report
TR-2003-90 (2003)

9. Ramanan, D., Forsyth, D.: Finding and tracking people from the bottom up. In:
Conference on Computer Vision and Pattern Recognition - CVPR. (2003)

10. Keck, M., Davis, J., Tyagi, A.: Tracking mean shift clustered point clouds for
3d surveillance. In: ACM Mulimedia Workshop on Video Surveillance and Sensor
Networks, Santa Barbara, California, USA, VSSN (2006) 187–194

11. Knoop, S., Vacek, S., Dillmann, R.: Modeling joint constraints for an articulated
3d human body model with artificial correspondences in icp. In: Proceedings of
the International Conference on Humanoid Robots, Tsukuba, Japan (2005)

12. Ziegler, J., Nickel, K., Stiefelhagen, R.: Tracking of the articulated upper body
on multi-view stereo image sequences. In: Conference on Computer Vision and
Pattern Recognition - CVPR, New York, USA, IEEE Computer Society (2006)

13. Schmidt, J., Kwolek, B., Fritsch, J.: Kernel Particle Filter for Real-Time 3D Body
Tracking in Monocular Color Images. In: Proc. of Automatic Face and Gesture
Recognition, Southampton, UK, IEEE (2006) 567–572

14. Rosenhahn, B., Kersting, U., Smith, A., Gurney, J., Brox, T., Klette, R.: A sys-
tem for marker-less human motion estimation. In Kropatsch, W., Sablatnig, R.,
Hanbury, A., eds.: Pattern recognition : 27th DAGM Symposium. Volume 3663 of
Lecture Notes in Computer Science., Vienna, Austria, Springer (2005) 230–237
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